11 research outputs found

    Atlanta scaled layouts from non-central panoramas

    Get PDF
    In this work we present a novel approach for 3D layout recovery of indoor environments using a non-central acquisition system. From a single non-central panorama, full and scaled 3D lines can be independently recovered by geometry reasoning without additional nor scale assumptions. However, their sensitivity to noise and complex geometric modeling has led these panoramas and required algorithms being little investigated. Our new pipeline aims to extract the boundaries of the structural lines of an indoor environment with a neural network and exploit the properties of non-central projection systems in a new geometrical processing to recover scaled 3D layouts. The results of our experiments show that we improve state-of-the-art methods for layout recovery and line extraction in non-central projection systems. We completely solve the problem both in Manhattan and Atlanta environments, handling occlusions and retrieving the metric scale of the room without extra measurements. As far as the authors’ knowledge goes, our approach is the first work using deep learning on non-central panoramas and recovering scaled layouts from single panoramas

    Non-central panorama indoor dataset

    Get PDF
    Omnidirectional images are one of the main sources of information for learning-based scene understanding algorithms. However, annotated datasets of omnidirectional images cannot keep the pace of these learning-based algorithms development. Among the different panoramas and in contrast to standard central ones, non-central panoramas provide geometrical information in the distortion of the image from which we can retrieve 3D information of the environment. However, due to the lack of commercial non-central devices, up until now there was no dataset of these kind of panoramas. In this data paper, we present the first dataset of non-central panoramas for indoor scene understanding. The dataset is composed of 2574 RGB non-central panoramas taken in around 650 different rooms. Each panorama has associated a depth map and annotations to obtain the layout of the room from the image as a structural edge map, list of corners in the image, the 3D corners of the room and the camera pose. The images are taken from photorealistic virtual environments and pixel-wise automatically annotated

    FreDSNet: Joint Monocular Depth and Semantic Segmentation with Fast Fourier Convolutions

    Full text link
    In this work we present FreDSNet, a deep learning solution which obtains semantic 3D understanding of indoor environments from single panoramas. Omnidirectional images reveal task-specific advantages when addressing scene understanding problems due to the 360-degree contextual information about the entire environment they provide. However, the inherent characteristics of the omnidirectional images add additional problems to obtain an accurate detection and segmentation of objects or a good depth estimation. To overcome these problems, we exploit convolutions in the frequential domain obtaining a wider receptive field in each convolutional layer. These convolutions allow to leverage the whole context information from omnidirectional images. FreDSNet is the first network that jointly provides monocular depth estimation and semantic segmentation from a single panoramic image exploiting fast Fourier convolutions. Our experiments show that FreDSNet has similar performance as specific state of the art methods for semantic segmentation and depth estimation. FreDSNet code is publicly available in https://github.com/Sbrunoberenguel/FreDSNetComment: 7 pages, 5 figures, 3 table

    OmniSCV: An omnidirectional synthetic image generator for computer vision

    Get PDF
    Omnidirectional and 360º images are becoming widespread in industry and in consumer society, causing omnidirectional computer vision to gain attention. Their wide field of view allows the gathering of a great amount of information about the environment from only an image. However, the distortion of these images requires the development of specific algorithms for their treatment and interpretation. Moreover, a high number of images is essential for the correct training of computer vision algorithms based on learning. In this paper, we present a tool for generating datasets of omnidirectional images with semantic and depth information. These images are synthesized from a set of captures that are acquired in a realistic virtual environment for Unreal Engine 4 through an interface plugin. We gather a variety of well-known projection models such as equirectangular and cylindrical panoramas, different fish-eye lenses, catadioptric systems, and empiric models. Furthermore, we include in our tool photorealistic non-central-projection systems as non-central panoramas and non-central catadioptric systems. As far as we know, this is the first reported tool for generating photorealistic non-central images in the literature. Moreover, since the omnidirectional images are made virtually, we provide pixel-wise information about semantics and depth as well as perfect knowledge of the calibration parameters of the cameras. This allows the creation of ground-truth information with pixel precision for training learning algorithms and testing 3D vision approaches. To validate the proposed tool, different computer vision algorithms are tested as line extractions from dioptric and catadioptric central images, 3D Layout recovery and SLAM using equirectangular panoramas, and 3D reconstruction from non-central panoramas

    Exploiting line metric reconstruction from non-central circular panoramas

    Get PDF
    In certain non-central imaging systems, straight lines are projected via a non-planar surface encapsulating the 4 degrees of freedom of the 3D line. Consequently the geometry of the 3D line can be recovered from a minimum of four image points. However, with classical non-central catadioptric systems there is not enough effective baseline for a practical implementation of the method. In this paper we propose a multi-camera system configuration resembling the circular panoramic model which results in a particular non-central projection allowing the stitching of a non-central panorama. From a single panorama we obtain well-conditioned 3D reconstruction of lines, which are specially interesting in texture-less scenarios. No previous information about the direction or arrangement of the lines in the scene is assumed. The proposed method is evaluated on both synthetic and real images

    Hypercatadioptric Line Images for 3D Orientation and Image Rectification

    Get PDF
    In central catadioptric systems 3D lines are projected into conics. In this work we present a new approach to extract conics in the raw catadioptric image, which correspond to projected straight lines in the scene. Using the internal calibration and two image points we are able to compute analytically these conics which we name hypercatadioptric line images. We also perform an exhaustive analysis on the elements that can affect the conic extraction accuracy and its error propagation. Besides that, we exploit the presence of parallel lines in man-made environments to compute the dominant vanishing points (VPs) in the omnidirectional image. In order to obtain the intersection of two of these conics we analyze the self-polar triangle common to this pair. With the information contained in the vanishing points we are able to obtain the 3D orientation of the catadioptric system. This method can be used either in a vertical stabilization system required by autonomous navigation or to rectify images required in applications where the vertical orientation of the catadioptric system is assumed. We use synthetic and real images to test the proposed method. We evaluate the 3D orientation accuracy with a ground truth given by a goniometer and with an inertial measurement unit (IMU). We also test our approach performing vertical and full rectifications in sequences of real images

    Instituto de Investigación en Ingeniería de Aragón

    No full text
    Abstract. Many of the omnidirectional visual systems have revolution symmetry and, consequently, they can be described by the radially symmetric distortion model. Following this projection model, straight lines are projected on curves called line-images. In this paper we present a novel unified framework to deal with these line-images directly on the image which is valid for any central system. In order to validate this framework we have developed a method to extract line-images with a 2-points RANSAC, which makes use of the camera calibration. The proposed method also gives the adjacent regions of line-images which can be used for matching purposes. The line-images extractor has been implemented and tested with simulated and real images.
    corecore